Les systèmes de numération binaire, décimal, et hexadécimal

www.gecif.net

Le binaire naturel

www.gecif.net

Le binaire naturel

- Le binaire naturel est le système de numération à base
 2
- Il utilise 2 chiffres pour représenter les nombres : 0 1
- Dans un nombre chaque chiffre est pondéré d'une puissance de 2
- Exemple : $1101 = 1.2^3 + 1.2^2 + 0.2^1 + 1.2^0$
- Donc $1011_{(2)} = 8 + 4 + 1 = 13_{(10)}$
- Pour préciser qu'un nombre est exprimé en binaire naturel on indique (2) en indice à sa droite
- Exemple : 1011011₍₂₎
- Les différents chiffres (0 ou 1) d'un nombre binaire sont appelés BIT (pour Blnary digiT, soit « chiffre binaire »)

Le binaire naturel

Pour lire ou écrire un nombre en binaire naturel il faut bien connaître les puissances de 2

2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1

Attention : $2^0 = 1$

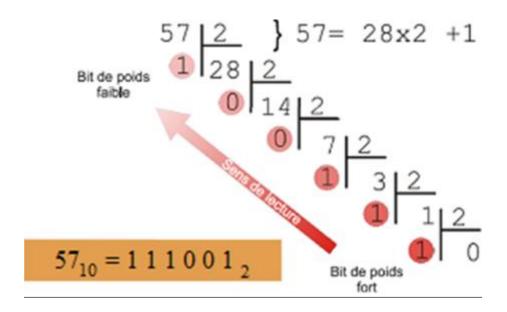
Conversion binaire naturel → **décimal**

Conversion binaire naturel vers décimal

- Exemple 1 : comment s'écrit le nombre binaire 101101 en décimal ?
- $101101_{(2)} = 1*32 + 0*16 + 1*8 + 1*4 + 0*2 + 1*1$ = 32 + 8 + 4 + 1= $45_{(10)}$
- Exemple 2 : $10000110_{(2)} = 128 + 4 + 2 = 134_{(10)}$
- Conclusion : pour convertir un nombre binaire en décimal il suffit d'additionner les puissances de 2 des bits qui sont à 1

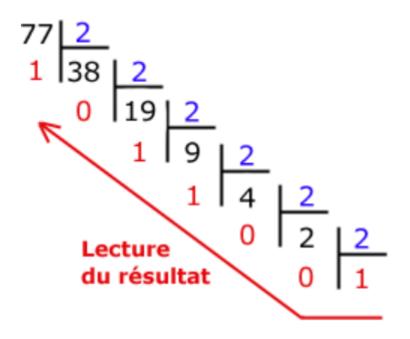
Conversion décimal → binaire naturel

Conversion décimal vers binaire naturel


- Exemple 1 : comment s'écrit le nombre décimal 28 en binaire ?
- $28_{(10)} = 16 + 8 + 4$ = $2^4 + 2^3 + 2^2$ = $11100_{(2)}$
- Exemple 2: $43_{(10)} = 32 + 8 + 2 + 1 = 101011_{(2)}$
- Conclusion : pour convertir un nombre décimal en binaire il faut le décomposer en somme de puissance de 2 indiquant les bits qui sont à 1
- Remarque : cette décomposition est unique

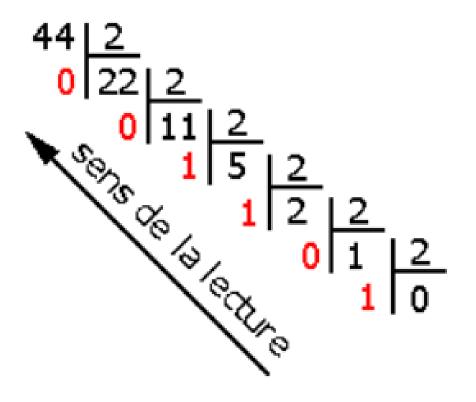
Conversion décimal vers binaire naturel

- Pour décomposer un nombre en somme de puissances de 2 on peut effectuer une succession de divisions entières par 2 en gardant les restes
- En gardant les restes (0 ou 1) on obtient la valeur de chacun des bits
- Exemple : comment s'écrit 14 en binaire naturel ?
- $14 \div 2 = 7$ et il reste 0
- $7 \div 2 = 3$ et il reste 1
- $3 \div 2 = 1$ et il reste 1
- On s'arrête lorsque le quotient vaut 1
- Conclusion : $14_{(10)} \equiv 1110_{(2)}$


Conversion décimal vers binaire naturel

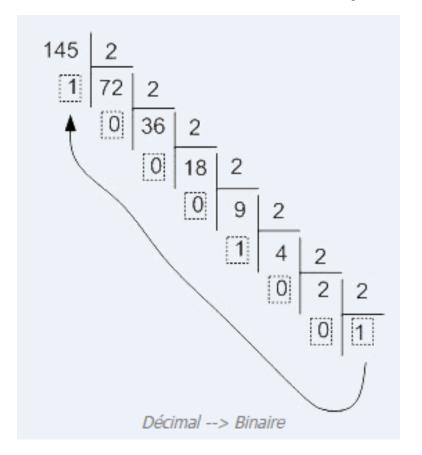
- Le premier reste est le LSB (bit de poids faible)
- Le dernier quotient est le MSB (bit de poids fort qui vaut toujours 1)

Comment s'écrit 77 en binaire ?


Effectuons une série de divisions par 2 successives :

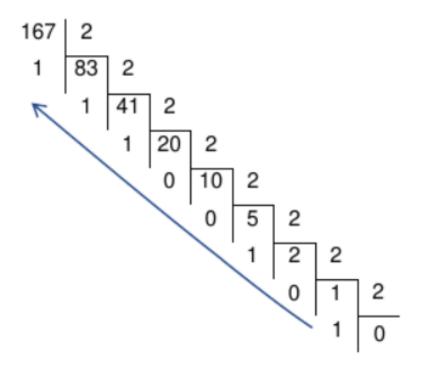
Conclusion: $77_{(10)} \equiv 1001101_{(2)}$

Comment s'écrit 44 en binaire ?


Effectuons une série de divisions par 2 successives :

Conclusion : $44_{(10)} = 32 + 8 + 4 \equiv 101100_{(2)}$

Comment s'écrit 145 en binaire ?


Effectuons une série de divisions par 2 successives :

Conclusion: $145_{(10)} = 128 + 16 + 1 \equiv 10010001_{(2)}$

Comment s'écrit 167 en binaire ?

Effectuons une série de divisions par 2 successives :

Conclusion: $167_{(10)} \equiv 10100111_{(2)}$

A retenir

Le binaire naturel : a retenir

- Le binaire naturel est le système de numération à base 2 : il utilise 2 chiffres pour représenter les nombres (0 et 1)
- Dans un nombre binaire chaque bit est pondéré d'une puissance de 2
- Rappel des 8 premières puissances de 2 :

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1

Conversion binaire naturel vers décimal:

- pour convertir un nombre binaire en décimal il suffit d'additionner les puissances de 2 des bits qui sont à 1
- Exemple: $101101_{(2)} = 32 + 8 + 4 + 1 = 45_{(10)}$

Conversion décimal vers binaire naturel (divisions par 2 successives) :

- pour convertir un nombre décimal en binaire il faut le décomposer en somme de puissances de 2 indiquant les bits qui sont à 1
- Exemple: $43_{(10)} = 32 + 8 + 2 + 1 = 101011_{(2)}$

L'hexadécimal

L'hexadécimal

- L'hexadécimal est le système de numération à base 16
- Il utilise 16 chiffres pour représenter les nombres :

F	E	D	С	В	A	9	8	7	6	5	4	3	2	1	0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

- Dans un nombre écrit en hexadécimal chaque chiffre est pondéré d'une puissance de 16
- Exemple : $3B7 = 3.16^2 + 11.16^1 + 7.16^0$
- Donc $3B7_{(16)} = 3x256 + 11x16 + 7 = 951_{(10)}$
- Pour préciser qu'un nombre est exprimé en hexadécimal on utilise le suffixe (16)
- Exemple : 2A86F₍₁₆₎
- Pour convertir du binaire en hexadécimal on convertit chaque quartet en chiffre (et inversement pour hexadécimal / binaire)

Chiffre Hexadécimal	Quartet en Binaire
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
E	1110
F	1111

Conversion binaire naturel → hexadécimal

Conversion binaire naturel vers hexadécimal

- Exemple 1 : comment s'écrit le nombre binaire 10100101 en hexadécimal ?
- $10100101_{(2)} = 1010 \ 0101$ = $A5_{(16)}$
- Exemple 2: $1111101_{(2)} = 0111 \ 1101 = 7D_{(16)}$
- Conclusion : pour convertir un nombre binaire en hexadécimal il suffit de convertir chaque quartet (4 bits) binaire en un chiffre hexadécimal

Conversion hexadécimal → binaire naturel

Conversion hexadécimal vers binaire naturel

- Exemple 1 : comment s'écrit le nombre hexadécimal 8C en binaire naturel ?
- $8C_{(16)} = 1000 \ 1101$ = $10001101_{(2)}$
- Exemple 2 : $E2F_{(16)}$ = 1110 0010 1111 = 111000101111 $_{(2)}$
- Conclusion : pour convertir un nombre hexadécimal en binaire naturel il suffit de convertir chaque chiffre hexadécimal en un quartet (nombre binaire sur 4 bits)
- Remarque : l'hexadécimal est utilisé pour écrire facilement les grands nombres binaires

Chiffre Hexadécimal	Quartet en Binaire
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
E	1110
F	1111

Conversion hexadécimal → décimal

Conversion hexadécimal vers décimal

- Exemple 1 : comment s'écrit le nombre hexadécimal 37 en décimal ?
- $37_{(16)} = 3x16 + 7x1 = 55_{(10)}$
- Exemple 2 : $E2F_{(16)} = 14x256 + 2x16 + 15x1 = 3631_{(10)}$
- Exemple 3 : $BAC_{(16)} = 11x256 + 10x16 + 12x1$ = $2988_{(10)}$
- Conclusion : pour convertir un nombre hexadécimal en décimal on pondère les chiffres par les puissances de 16 (1, 16, 256)

Conversion décimal → hexadécimal

Conversion décimal vers hexadécimal

- Exemple 1 : comment s'écrit le nombre décimal 21 en hexadécimal ?
- $21_{(10)} = 1 \times 16 + 5 \times 1 = 15_{(16)}$
- Exemple 2: $32_{(10)} = 2x16 + 0x1 = 20_{(16)}$
- Exemple 3: $57_{(10)} = 3x16 + 9x1 = 39_{(16)}$
- Exemple 4: $77_{(10)} = 4x16 + 13x1 = 4D_{(16)}$
- Conclusion: pour convertir un nombre décimal en hexadécimal il faut le décomposer en puissances de 16 (1, 16, 256)

En résumé

- binaire → décimal : on additionne le poids (1, 2, 4, 8, 16, etc.) des bits qui sont à 1
- décimal → binaire : on décompose le nombre en somme de puissances de 2 (1, 2, 4, 8, 16, etc.)
- hexadécimal → décimal : on pondère les chiffres par les puissances de 16 (1, 16, 256)
- décimal → hexadécimal : on décompose le nombre en somme de puissances de 16 (1, 16, 256)
- binaire -> hexadécimal : on convertit chaque quartet binaire en un chiffre hexadécimal
- hexadécimal -> binaire : on convertit chaque chiffre hexadécimal en un quartet binaire

Fin : place maintenant à l'entraînement sur le QCM