Classement des algorithmes de tri

Site Internet : Type de document : Intercalaire :
www.gecif.net Exercice

I | — Comparaison des 3 algorithmes de tri classiques

Les 3 algorithmes de tri classiques sont :
" e tri par sélection
" e tri parinsertion
" e tria bulles

Dans le meilleur des cas (liste déja triée) et dans le pire des cas (liste rangée a I'envers) chacun des ces 3 algorithmes de tri effectue
un nombre précis de comparaisons et un nombre précis d'échanges en fonction du nombre total de valeurs a trier n.

Les 3 premiers tableaux donnent le nombre de comparaisons et le nombre d'échanges pour n=6, n=10 et n=12 : a tester réellement
avec les cartes en papier, et a compter manuellement en effectuant tous les mouvements réalisant chacun des 3 algorithmes.

_ Dans le meilleur des cas Dans le pire des cas
Pour n=6 comparaisons échanges comparaisons échanges
Tri par sélection
Tri par insertion
Tri a bulles
P =10 Dans le meilleur des cas Dans le pire des cas
our n= comparaisons échanges comparaisons échanges
Tri par sélection
Tri par insertion
Tri a bulles
Dans le meilleur des cas Dans le pire des cas
Pour n=12 . - . -
comparaisons échanges comparaisons échanges
Tri par sélection
Tri par insertion
Tri a bulles

Ce dernier tableau récapitule les valeurs en fonction de n dans le cas général : quelque soit la valeur de n.

Dans le meilleur des cas Dans le pire des cas

Pour n quelconque , - , -
comparaisons echanges comparaisons echanges

Tri par sélection

Tri par insertion

Tri a bulles

Il - Complexité temporelle des 13 algorihmes de tri|

Les 13 algorithmes de tri comparés ici sont :

= 1:letripar Sélection

= 3:letri par Insertion et ses 2 variantes le tri Shell et le tri Ghome

= 4 :letriaBulles et ses 3 variantes le tri Shaker (tri a bulles bidirectionnel), le tri A peigne (tri a bulles a pas variable) et le tri
Oyelami (tri a peigne bidirectionnel)

= 1:letri Fusion (basé sur le principe "diviser pour mieux régner")

= 1:letriRapide (utilise un pivot) : place a gauche du pivot toutes les valeurs inférieures et a droite les valeurs supérieures

= 2 :les tris utilisant un arbre binaire : le tri Maximier (rempli un arbre binaire dont le parcourt en largeur donne les noeuds
dans l'ordre) et I'extraction du parcourt en profondeur dans I'ordre infixe d'un Arbre Binaire de Recherche (ABR+infixe)

= 1:letri Timsort (utilisé par Python : fonction sorted() et méthode sort() des listes) : tri fusion suivi d'un tri par insertion

EXERCICE : Comparaison des algorithmes de tri www.gecif.net Page 1/ 2 |




Le tableau suivant récapitule la complexité temporelle des 13 algorithmes de tri en distinguant les 3 cas suivants :
= dans le meilleur des cas (liste déja triée dans |'ordre croissant au début)
= en moyenne (apres un grand nombre de tests avec des listes mélangées)
= dans le pire des cas (liste triée dans I'ordre décroissant au début)

Complexité temporelle

Meilleur des cas

En moyenne

Pire des cas

Sélection

Insertion

Bulles

Shaker

A peigne

Gnome

Shell

Oyelami

Maximier

ABR + infixe

Fusion

Rapide

Timsort

Rappel des différents types de complexités temporelles :

= |ogarithmique : O(log(n))
= linéaire : O(n)

= quasi-linéaire : O(n.log(n))

= quadratique : O(n?)

Prise de notes complémentaires et personnelles :

EXERCICE : Comparaison des algorithmes de tri

www.gecif.net

Page2 / 2




